SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "db:Swepub ;pers:(Jantsch Axel);pers:(Weldezion Awet Yemane)"

Sökning: db:Swepub > Jantsch Axel > Weldezion Awet Yemane

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grange, Matt, et al. (författare)
  • Optimal Network Architectures for Minimizing Average Distance in k-ary n-dimensional Mesh Networks
  • 2011
  • Ingår i: NOCS 2011: The 5th ACM/IEEE International Symposium on Networks-on-Chip. - New York, NY, USA : ACM Digital Library. ; , s. 57-64
  • Konferensbidrag (refereegranskat)abstract
    • A general expression for the average distance for meshes of any dimension and radix, including unequal radices in different dimensions, valid for any traffic pattern under zero-load condition is formulated rigorously to allow its calculation without network-level simulations. The average distance expression is solved analytically for uniform random traffic and for a set of local random traffic patterns. Hot spot traffic patterns are also considered and the formula is empirically validated by cycle true simulations for uniform random, local, and hot spot traffic. Moreover, a methodology to attain closed-form solutions for other traffic patterns is detailed. Furthermore, the model is applied to guide design decisions. Specifically, we show that the model can predict the optimal 3-D topology for uniform and local traffic patterns. It can also predict the optimal placement of hot spots in the network. The fidelity of the approach in suggesting the correct design choices even for loaded and congested networks is surprising. For those cases we studied empirically it is 100%.
  •  
2.
  • Grange, Matt, et al. (författare)
  • Physical mapping and performance study of a multi-clock 3-Dimensional Network-on-Chip mesh
  • 2009
  • Ingår i: 2009 IEEE INTERNATIONAL CONFERENCE ON 3D SYSTEMS INTEGRATION. - San Francisco : IEEE conference proceedings. - 9781424445110 ; , s. 345-351
  • Konferensbidrag (refereegranskat)abstract
    • The physical performance of a 3-Dimensional Network-on-Chip (NoC) mesh architecture employing through silicon vias (TSV) for vertical connectivity is investigated with a cycle-accurate RTL simulator. The physical latency and area impact of TSVs, switches, and the on-chip interconnect is evaluated to extract the maximum signaling speeds through the switches, horizontal and vertical network links. The relatively low parasitics of TSVs compared to the on-chip 2-D interconnect allow for higher signaling speeds between chip layers. The system-level impact on overall network performance as a result of clocking vertical packets at a higher rate through the TSV interconnect is simulated and reported.
  •  
3.
  • Haghbayan, M. -H, et al. (författare)
  • Dark silicon aware power management for manycore systems under dynamic workloads
  • 2014
  • Ingår i: 2014 32nd IEEE International Conference on Computer Design, ICCD 2014. ; , s. 509-512
  • Konferensbidrag (refereegranskat)abstract
    • Dark Silicon denotes the phenomenon that, due to thermal and power constraints, the fraction of transistors that can operate at full frequency is decreasing with each technology generation. We propose a PID (Proportional Integral Derivative) controller based dynamic power management method that considers an upper bound on power consumption (called the Thermal Design Power (TDP)). To avoid violation of the TDP constraint for manycore systems running highly dynamic workloads, it provides fine-grained DVFS (Dynamic Voltage and Frequency Scaling) including near-threshold operation. In addition, the method distinguishes applications with hard Real-Time, soft Real-Time and no Real-Time constraints and treats them with appropriate priorities. In simulations with dynamic workloads mixed-critical application profiles, we show that the method is effective in honoring the TDP bound and it can boost system throughput by over 43% compared to a naive TDP scheduling policy.
  •  
4.
  • Rahmani, Amir-Mohammad, et al. (författare)
  • Dynamic Power Management for Many-Core Platforms in the Dark Silicon Era : A Multi-Objective Control Approach
  • 2015
  • Ingår i: Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM International Symposium on. - : IEEE conference proceedings. - 9781467380089 ; , s. 219-224
  • Konferensbidrag (refereegranskat)abstract
    • Power management of NoC-based many-core systems with runtime application mapping becomes more challenging in the dark silicon era. It necessitates a multi-objective control approach to consider an upper limit on total power consumption, dynamic behaviour of workloads, processing elements utilization, per-core power consumption, and load on network-on-chip. In this paper, we propose a multi-objective dynamic power management method that simultaneously considers all of these parameters. Fine-grained voltage and frequency scaling, including near-threshold operation, and per-core power gating are utilized to optimize the performance. In addition, a disturbance rejecter is designed that proactively scales down activity in running applications when a new application commences execution, to prevent sharp power budget violations. Simulations of dynamic workloads and mixed time-critical application profiles show that our method is effective in honoring the power budget while considerably boosting the system throughput and reducing power budget violation, compared to the state-of-the-art power management policies.
  •  
5.
  • Weldezion, Awet Yemane, et al. (författare)
  • A scalable multi-dimensional NoC simulation model for diverse spatio-temporal traffic patterns
  • 2013
  • Ingår i: 2013 IEEE International 3D Systems Integration Conference, 3DIC 2013. - : IEEE. - 9781467364843 ; , s. 6702365-
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes a powerful simulation platform that enables accurate simulations of numerous network configurations under realistic traffic patterns to predict the performance and power needs of a 3-D integrated system early in the design flow. The simulation platform can model virtually any sized 2-D or 3-D network configuration, providing low-cost and fast tradeoff evaluations of various systems architectures. The network simulator uses scalable RTL-level models that can be used for accurate power and timing analyses. We demonstrate the capability of our simulation model by analyzing the performance of various network topologies under spatio-temporal traffic patterns to show how the network topology can be adjusted to meet the performance requirements of a design before it is manufactured. The simulation results can be used to optimize the placement of cores and communication buses early in the flow. By using the model, standard applications such as mobile application processor, femto-cell base-stations on-chip and wide-IO TSV memory stacking can be simulated.
  •  
6.
  • Weldezion, Awet Yemane, et al. (författare)
  • Scalability of Network-on-Chip Communication Architecture for 3-D Meshes
  • 2009
  • Ingår i: 2009 3RD ACM/IEEE INTERNATIONAL SYMPOSIUM ON NETWORKS-ON-CHIP. - NEW YORK : IEEE. - 9781424441426 ; , s. 114-123
  • Konferensbidrag (refereegranskat)abstract
    • Design Constraints imposed by global interconnect delays as well as limitations in integration of disparate technologies make 3-D chip stacks an enticing technology solution for massively integrated electronic systems. The scarcity of vertical interconnects however imposes special constraints on the design of the communication architecture. This article examines the performance and scalability of different communication topologiesfor 3-D Network-on-Chips (NoC) using Through-Silicon-Was (TSV) for inter-die connectivity. Cycle accurate RTL-level simulations are conducted for two communication schemes based on a 7-port switch and a centrally arbitrated vertical bus using different traffic patterns. The scalability of the 3-D NoC is examined under both communication architectures and compared to 2-D NoC structures in terms of throughput and latency in order to quantify the variation of network performance with the number of nodes and derive key design guidelines.
  •  
7.
  • Weldezion, Awet Yemane, et al. (författare)
  • Zero-load Predictive Model for Performance Analysis in Deflection Routing NoCs
  • 2015
  • Ingår i: Microprocessors and microsystems. - Elsevier B.V. : Elsevier BV. - 0141-9331 .- 1872-9436. ; 39:8, s. 634-647
  • Tidskriftsartikel (refereegranskat)abstract
    • We study a static model for 2-D and 3-D networks that accurately represents the average distance travelled by packets under deflection routing, which is a specific form of adaptive routing. The model captures static properties of the network topology and the spatial distribution of traffic, but does not take into account traffic loading and congestion. Even though this static model cannot accurately predict packet latency under high load, we contend that it is a perfect predictor of deflection routing networks’ relative performance under any load condition below saturation, and thus always correctly predicts the optimum network configuration. This is verified through cycle-accurate simulations of congested and uncongested networks with fully adaptive, deflection routing for regular traffic patterns such as uniform random, localised, bursty, and others, as well as irregular patterns in both regular and irregular networks. As the networks with minimal average distance perform best even under high traffic load, the average distance model establishes a robust relation between a static network property, average distance, and network performance under load, providing new insight into network behaviour and an opportunity to identify the optimal network configuration without time-consuming simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy